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Abstract 

 

1 | Introduction  

Zadeh [1] introduced the concept of fuzzy set for the first time in 1965 which covers all weak aspects 

of the classical set theory. In fuzzy set, the membership value is allocated from the interval [0, 1] to 

all the elements of the universe under consideration. Zadeh [2] used his own concept as a basis for a 

theory of possibility. Dubois and Prade [3] and [4] established relationship between fuzzy sets and 

probability theories and also derive monotonicity property for algebraic operations performed 

between random set-valued variables. Ranking fuzzy numbers in the setting of possibility theory was 

done by Dubois and Prade [5]. This concept was used by Liang et al. in data analysis, similarities 

measures in fuzzy sets were discussed by Beg and Ashraf [6]-[8].  
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Set difference and symmetric difference of fuzzy sets were established by Vemuri et al., after that, Neog 

and Sut [9] extended the work to complement of an extended fuzzy set. A lot of work is done by 

researchers in fuzzy mathematics and its hybrids [10]-[16].  

In some real life situations, the values are in the form of intervals due to which it is hard to allocate a 

membership value to the element of the universe of discourse. Therefore, the concept of interval-valued 

is introduced which proved a very powerful tool in this area. 

In 1986, Atanassov [17] and [18] introduced the concept of intuitionistic fuzzy set in which the 

membership value and non-membership value is allocated from the interval [0,1] to all the elements of 

the universe under consideration. It is the generalization of the fuzzy set. The invention of intuitionistic 

fuzzy set proved very important tool for researchers. Ejegwa et al. [19] discussed about operations, 

algebra, model operators and normalization on intuitionistic fuzzy sets. Szmidt and Kacprzyk [20] gave 

geometrical representation of an intuitionistic fuzzy set is a point of departure for our proposal of 

distances between intuitionistic fuzzy sets and also discussed properties. Szmidt and Kacprzyk [21] also 

discussed about non-probabilistic-type entropy measure for these sets and used it for geometrical 

interpretation of intuitionistic fuzzy sets. Proposed measure in terms of the ratio of intuitionistic fuzzy 

cardinalities was also defined and discussed. Ersoy and Davvaz [22] discussed the basic definitions and 

properties of intuitionistic fuzzy 𝛤- hyperideals of a 𝛤 - semi-hyperring with examples are introduced 

and described some characterizations of Artinian and Noetherian 𝛤 - semi hyper ring. Bustince and 

Burillo [23] proved that vague sets are intuitionistic fuzzy sets. A lot of work is done by researchers in 

intuitionistic fuzzy environment and its hybrids [24]-[33]. 

In 2019, Smarandache defined the concept of refined intuitionistic fuzzy set [34]. In this paper, we 

extend the concept to refined intuitionistic fuzzy set and defined some fundamental concepts and 

aggregation operations of refined intuitionistic fuzzy set. 

Imprecision is a critical viewpoint in any decision making procedure. Various tools have been invented 

to deal with the uncertain environment. Perhaps the important tool in managing with imprecision is 

intuitionistic fuzzy sets. Besides, the most significant thing is that in real life scenario, it is not sufficient 

to allocate a single membership and non-membership value to any object under consideration. This 

inadequacy is addressed with the introduction of refined intuitionistic fuzzy set. Having motivation from 

this novel concept, essential elements, set theoretic operations and basic laws are characterized for 

refined intuitionistic fuzzy set in this work. 

The remaining article is outlined in such a way that the Section 2 recalls some basic definitions along 

with illustrative example. Section 3 explains basic notions of Refined Intuitionistic Fuzzy Set (RIFS) 

including subset, equal set, null set and complement set along with their examples for the clear 

understanding. Section 4 explains the aggregation operations of RIFS with the help of example, Section 

5 gives some basic laws of RIFS and in the last, Section 6 concludes the work and gives the future 

directions. 

2| Preliminaries 

In this section, some basic concepts of Fuzzy Set (FS), Intuitionistic Fuzzy Set (IFS) and RIFS are 

discussed. 

Let us consider 𝑈̆ be a universal set, 𝑁 be a set of natural numbers, 𝐼 ̆represent the interval [0,1], 𝑇𝜂
𝜔 

denotes the degree of sub-truth of type 𝜔 = 1,2,3,… , 𝛼 and 𝐹𝜂
𝜆 denotes the degree of sub-falsity of type 

𝜆 = 1,2,3,… , 𝛽 such that𝛼and 𝛽 are natural numbers. An illustrative example is considered to understand 

these entire basic concepts throughout the paper. 
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Definition 1. [1, 2] The fuzzy set 𝜂̆𝑓 = {< 𝛿 ̆, 𝛼𝜂̆𝑓

(𝛿 ̆) > |𝛿 ̆ ∈ 𝑈̆ } on 𝑈̆ such that 𝛼𝜂̆𝑓
(𝛿 ̆): 𝑈̆  → 𝐼 ̆ where 

𝛼𝜂̆𝑓
(𝛿 ̆) describes the membership of 𝛿 ̆ ∈ 𝑈̆. 

 

 

 

 

 

Fig. 1. Representation of fuzzy set. 

Example 1. Hamna wants to purchase a dress for farewell party event of her university. She expected to 

purchase such dress which meets her desired requirements according to the event. Let 𝑈̆ = {𝐵̆1, 𝐵̆2, 𝐵̆3, 𝐵̆4}, 

be different well-known brands of clothes in Pakistan such that 

B̆1 = Ideas Gul Ahmad; 

B̆2 = Khaadi; 

B̆3 = Nishat Linen; 

        B̆4 = Junaid jamshaid. 

Then fuzzy set 𝜂̆𝑓 on the universe 𝑈̆ is written in such a way that 𝜂̆𝑓 = {
 < 𝐵̆1, 0.45 >,< 𝐵̆2, 0.57 >,

 < 𝐵̆3, 0.6 >, < 𝐵̆4, 0.64 > 
} . 

Definition 2.  [18]. An IFS 𝜂̆𝐼𝐹𝑆 on 𝑈̆ is given by 𝜂̆𝐼𝐹𝑆 = {< 𝛿 ̆, 𝑇𝜂̆(𝛿 ̆), 𝐹𝜂̆(𝛿 ̆) > |𝛿 ̆ ∈ 𝑈̆ }, 

where 𝑇𝜂̆(𝛿 ̆), 𝐹𝜂̆(𝛿 ̆): 𝑈̆  → 𝑃([0,1]), respectively, with the condition 𝑠𝑢𝑝 𝑇𝜂̆(𝛿 ̆) + 𝑠𝑢𝑝 𝐹𝜂̆(𝛿 ̆) ≤ 1. 

Example 2. Consider the illustrative example, and then the intuitionistic fuzzy set 𝜂̆𝐼𝐹𝑆 on the universe 𝑈̆ 

is given as 𝜂̆𝐼𝐹𝑆 = {< 𝐵̆1, 0.75,0.14 >, < 𝐵̆2, 0.57, 0.2 >, < 𝐵̆3, 0.6, 0.3 >, < 𝐵̆4, 0.64, 0.16 >}. 

Definition 3. [34] A RIFS 𝜂̆𝑅𝐼𝐹𝑆 on 𝑈̆ is given by 𝜂̆𝑅𝐼𝐹𝑆 = {< 𝛿 ̆,  𝑇𝜂̆
𝜔(𝛿 ̆), 𝐹𝜂̆

𝜆(𝛿 ̆) > :   𝜔 ∈ 𝑁1
𝛼 ,   𝜆 ∈ 𝑁1

𝛽
, 𝛼 +

𝛽 ≥ 3,    𝛿 ̆ ∈ 𝑈̆ }, where 𝛼, 𝛽 ∈  𝐼 ̆such that  𝑇𝜂̆
𝜔 , 𝐹𝜂̆

𝜆    ⊆  𝐼 ,̆ respectively, with the condition 

∑𝑠𝑢𝑝  𝑇𝜂̆
𝜔(𝛿 ̆)

𝛼

𝜔=1

+ ∑𝑠𝑢𝑝𝐹𝜂̆
𝜆(𝛿 ̆)

𝛽

𝜆=1

≤ 1. 

It is denoted by(𝛿 ̆, 𝐺̆), where 𝐺̆ = ( 𝑇𝜂̆
𝜔 , 𝐹𝜂̆

𝜆 ). 

Example 3. Consider the illustrative example, then the RIFS 𝜂̆
𝑅𝐼𝐹𝑆

 can be written in such a way that 

𝜂̆𝑅𝐼𝐹𝑆 = { < 𝐵̆1, (0.5, 0.4), (0.3,0.25) >, < 𝐵̆2, (0.35,0.3), (0.15,0.1) >, 

< 𝐵̆3, (0.35,0.25), (0.3,0.2) >, < 𝐵̆4, (0.6,0.1), (0.12,0.2) > }. 
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3| Basic Notions of RIFS 

In this section, some basic notions of subset, equal sets, null set and complement set for RIFS are 

introduced. 

Definition 4. Refined intuitionistic fuzzy subset 

Let 𝜂̆1𝑅𝐼𝐹𝑆
= (𝛿̆, 𝐺̆1) and 𝜂̆2𝑅𝐼𝐹𝑆

= (𝛿̆, 𝐺̆2) be two RIFS, then 𝜂̆1𝑅𝐼𝐹𝑆
⊆  𝜂̆2𝑅𝐼𝐹𝑆

, if 

∑𝑠𝑢𝑝  𝑇𝜂̆1
𝜔 (𝛿 ̆)

𝛼

𝜔=1

≤ ∑𝑠𝑢𝑝  𝑇𝜂̆2
𝜔 (𝛿 ̆)

𝛼

𝜔=1

,   ∑𝑠𝑢𝑝 𝐹𝜂̆1
𝜆 (𝛿 ̆)

𝛽

𝜆=1

≥  ∑𝑠𝑢𝑝 𝐹𝜂̆2
𝜆 (𝛿 ̆)

𝛽

𝜆=1

  ∀     𝛿 ̆  ∈  𝑈 ̆. 

Remark 1. If   

∑𝑠𝑢𝑝  𝑇𝜂̆1
𝜔 (𝛿 ̆)

𝛼

𝜔=1

< ∑𝑠𝑢𝑝  𝑇𝜂̆2
𝜔 (𝛿 ̆)

𝛼

𝜔=1

,   ∑𝑠𝑢𝑝 𝐹𝜂̆1
𝜆 (𝛿 ̆)

𝛽

𝜆=1

> ∑𝑠𝑢𝑝 𝐹𝜂̆2
𝜆 (𝛿 ̆)

𝛽

𝜆=1

  ∀     𝛿 ̆  ∈  𝑈 ̆. 

Then it is denoted by (𝛿 ̆, 𝐺̆1) ⊂  (𝛿 ̆, 𝐺̆2). 

Suppose (𝛿 ̆, 𝐺̆1
𝑖 ) ⊂  (𝛿 ̆, 𝐺̆2

𝑖 ) be two families of RIFS, then (𝛿 ̆, 𝐺̆1
𝑖 ) is called family of refined intuitionistic 

fuzzy subset of (𝛿 ̆, 𝐺̆2
𝑖 ), if 𝐺̆1

𝑖 ⊂  𝐺̆2
𝑖  and  

∑𝑠𝑢𝑝  𝑇𝜂̆1
𝜔 (𝛿 ̆)

𝛼

𝜔=1

< ∑𝑠𝑢𝑝  𝑇𝜂̆2
𝜔 (𝛿 ̆)

𝛼

𝜔=1

,∑𝑠𝑢𝑝 𝐹𝜂̆1
𝜆 (𝛿 ̆)

𝛽

𝜆=1

> ∑𝑠𝑢𝑝 𝐹𝜂̆2
𝜆 (𝛿 ̆)

𝛽

𝜆=1

, ∀  𝛿 ̆ ∈ 𝑈 ̆. 

We denote it by (𝛿 ̆, 𝐺̆1
𝑖 ) ⊂  (𝛿 ̆, 𝐺̆2

𝑖 )∀     𝑖 = 1, 2, 3, … , 𝑛. 

Example 4. Consider the illustrative example, let 𝜂̆1𝑅𝐼𝐹𝑆
 and 𝜂̆2𝑅𝐼𝐹𝑆

 be two RIFS such that 

η̆1RIFS
= { < B̆1, (0.35, 0.1), (0.22, 0.19) >, < B̆2, (0.25,0.03), (0.15,0.19) >, 

< B̆3, (0.2,0.1), (0.2,0.24) >, < B̆4, (0.3,0.4), (0.06,0.04) > }, 

and  

η̆2RIFS
= { < B̆1, (0.38, 0.11), (0.2, 0.14) >, < B̆2, (0.45,0.04), (0.1,0.14) >, 

< B̆3, (0.3,0.2), (0.01,0.06) >, < B̆4, (0.31,0.41), (0.01,0.011) > }. 

Then from above equations, it is clear that 𝜂̆1𝑅𝐼𝐹𝑆
⊆  𝜂̆2𝑅𝐼𝐹𝑆

. 

Definition 5. Equal refined intuitionistic fuzzy sets 

Let 𝜂̆1𝑅𝐼𝐹𝑆
= (𝛿̆, 𝐺̆1) and 𝜂̆2𝑅𝐼𝐹𝑆

= (𝛿̆, 𝐺̆2) be two RIFS, then 𝜂̆1𝑅𝐼𝐹𝑆
=  𝜂̆2𝑅𝐼𝐹𝑆

, if 𝜂̆1𝑅𝐼𝐹𝑆
⊆  𝜂̆2𝑅𝐼𝐹𝑆

 and 

𝜂̆2𝑅𝐼𝐹𝑆
⊆  𝜂̆1𝑅𝐼𝐹𝑆

. 

Example 5. Consider the illustrative example, let 𝜂̆1𝑅𝐼𝐹𝑆
 and 𝜂̆2𝑅𝐼𝐹𝑆

 be two RIFS such that  

η̆1RIFS
= (δ̆, Ğ1) = { < B̆1, (0.4, 0.5), (0.03, 0.04) >, < B̆2, (0.5,0.4), (0.05,0.04) >, 

< B̆3, (0.5,0.2), (0.01,0.06) >, < B̆4, (0.3,0.4), (0.06,0.04) > }, 



283 

 

A
 s

tu
d

y
 o

n
 f

u
n

d
a
m

e
n

ta
ls

 o
f 

re
fi

n
e
d

 i
n

tu
it

io
n

is
ti

c
 f

u
z
z
y
 s

e
t 

w
it

h
 s

o
m

e
 p

ro
p

e
rt

ie
s

 
and  

η̆2RIFS
= (δ̆, Ğ2) = { < B̆1, (0.4, 0.5), (0.03, 0.04) >, < B̆2, (0.5,0.4), (0.05,0.04) >, 

< B̆3, (0.5,0.2), (0.01,0.06) >, < B̆4, (0.3,0.4), (0.06,0.04) > }. 

Then from above equations, it is clear that 𝜂̆1𝑅𝐼𝐹𝑆
=  𝜂̆2𝑅𝐼𝐹𝑆

. 

Definition 6. Null refined intuitionistic fuzzy set 

Let RIFS (𝛿̆, 𝐺̆) is said to be null RIFS if  

∑𝑠𝑢𝑝  𝑇𝜂̆
𝜔(𝛿 ̆)

𝛼

𝜔=1

= 0,   ∑𝑠𝑢𝑝 𝐹𝜂̆
𝜆(𝛿 ̆)

𝛽

𝜆=1

= 0, ∀     𝛿 ̆  ∈  𝑈 ̆. 

It is denoted by(𝛿̆, 𝐺̆)
𝑛𝑢𝑙𝑙

. 

Example 6. Consider the illustrative example, the null RIFS is given as 

(δ̆, Ğ) = { < B̆1, (0, 0), (0, 0) >, < B̆2, (0,0), (0,0) >, 

< B̆3, (0,0), (0,0) >, < B̆4, (0,0), (0,0) > }. 

Definition 7. Complement of refined intuitionistic fuzzy set 

The complement of RIFS(𝛿̆, 𝐺̆) is denoted by (𝛿̆, 𝐺̆𝑐) and is defined that if 

∑sup  Tη̆c
ω(δ ̆)

α

ω=1

= ∑sup Fη̆
λ(δ ̆)

β

λ=1

, ∑sup Fη̆c
λ (δ ̆)

β

λ=1

= ∑sup  Tη̆
ω(δ ̆)

α

ω=1

, ∀     δ ̆  ∈  U ̆. 

Remark 2. The complement of family of RIFS(𝛿̆, 𝐺̆𝑐 ) is denoted by (𝛿̆, 𝐺̆𝑐) and is defined in a way that if 

∑sup  Tη̆i
c
ω(δ ̆)

α

ω=1

= ∑sup Fη̆
λ(δ ̆)

β

λ=1

,∑supFη̆i
c

λ (δ ̆)

β

λ=1

= ∑sup  Tη̆
ω(δ ̆)

α

ω=1

, ∀   i = 1,2,3,… , n. 

Example 7. Consider the illustrative example, if there is a RIFS 𝜂̆𝑅𝐼𝐹𝑆 given as 

η̆RIFS = { < B̆1, (0.2, 0.1), (0.3, 0.35) >, < B̆2, (0.05,0.34), (0.45,0.04) >, 

< B̆3, (0.01,0.6), (0.1,0.02) >, < B̆4, (0.3,0.04), (0.12,0.2) > }. 

Then the complement of RIFS𝜂̆𝑅𝐼𝐹𝑆 given as 

η̆RIFS = { < B̆1(0.3, 0.35), (0.2, 0.1) >, < B̆2, (0.45,0.04), (0.05,0.34) >, 

< B̆3, (0.1,0.02), (0.01,0.6) >, < B̆4, (0.12,0.2), (0.3,0.04) > }. 

4| Aggregation Operators of RIFS 

In this section, union, intersection, extended intersection, restricted union, restricted intersection and 

restricted difference of RIFS is defined with the help of illustrative example. 
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Definition 8. Union of two RIFS 

The union of two RIFS (𝛿̆, 𝐺̆1) and (𝛿̆, 𝐺̆2)is denoted by (𝛿̆, 𝐺̆1) ∪ (𝛿̆, 𝐺̆2) and it isdefined as (𝛿̆, 𝐺̆1) ∪

(𝛿̆, 𝐺̆2) = (𝛿̆, Ῠ ), where Ῠ = 𝐺̆1 ∪ 𝐺̆2, and truth and falsemembership of (𝛿̆, Ῠ ̆) is defined in such a 

way that  

TῨ(δ̆) = max ( 
  
  
 

∑sup  Tη̆1

ω(δ ̆)

α

ω=1

,∑sup  Tη̆2

ω (δ ̆)

α

ω=1

) 
  
  
 

, 

𝐹𝛶̆(𝛿̆) = 𝑚𝑖𝑛
( 
  
  
 
 

∑𝑠𝑢𝑝𝐹𝜂̆1

𝜆 (𝛿 ̆)

𝛽

𝜆=1

,∑𝑠𝑢𝑝𝐹𝜂̆2

𝜆 (𝛿 ̆)

𝛽

𝜆=1
) 
  
  
 
 

. 

Remark 3. The union of two families of RIFS (𝛿̆, 𝐺̆1

𝑖
) and (𝛿̆, 𝐺̆2

𝑖 )is denoted by (𝛿̆, 𝐺̆1
𝑖 ) ∪ (𝛿̆, 𝐺̆2

𝑖 ) and it 

is defined as (𝛿̆, 𝐺̆1
𝑖 ) ∪ (𝛿̆, 𝐺̆2

𝑖 ) = (𝛿̆, Ῠ 𝑖), where Ῠ
𝑖
= 𝐺̆1

𝑖
∪ 𝐺̆2

𝑖
,   𝑖 = 1,2,3, … , 𝑛, and truth and false 

membership of (𝛿̆, Ῠ 𝑖 ) is defined in such a way that 

𝑇𝛶̆ 𝑖(𝛿̆) = 𝑚𝑎𝑥 ( 
  
  
 

∑𝑠𝑢𝑝  𝑇𝜂̆1

𝜔 (𝛿 ̆)

𝛼

𝜔=1

,∑𝑠𝑢𝑝  𝑇𝜂̆2

𝜔 (𝛿 ̆)

𝛼

𝜔=1

) 
  
  
 

, 

𝐹𝛶̆ 𝑖(𝛿̆) = 𝑚𝑖𝑛
( 
  
  
 
 

∑𝑠𝑢𝑝𝐹𝜂̆1

𝜆 (𝛿 ̆)

𝛽

𝜆=1

,∑𝑠𝑢𝑝𝐹𝜂̆2

𝜆 (𝛿 ̆)

𝛽

𝜆=1
) 
  
  
 
 

. 

Example 8. Consider the illustrative example, suppose that 

(δ̆, Ğ1) = { < B̆1, (0.13,0.19),(0.24, 0.1)>,< B̆2, (0.2,0.25), (0.15,0.24) >, 

< B̆3, (0.1,0.36), (0.34,0.12) >, < B̆4, (0.16,0.14), (0.23,0.37) > }, 

and 

(δ̆, Ğ2) = { < B̆1, (0.2,0.3),(0.3, 0.15)>,  

< B̆2, (0.32,0.38), (0.1,0.04) >, 

< B̆3, (0.01,0.16), (0.5,0.2) >, < B̆4, (0.26,0.15), (0.12,0.2) > }, 

be two RIFS. Then the union of RIFS (𝛿̆, 𝐺̆1) and (𝛿̆, 𝐺̆2)is given as 

(δ̆, Ῠ ), = { < B̆1, (0.2, 0.3),(0.24,0.1)>,< B̆2, (0.32,0.38), (0.1,0.04) >, 

< B̆3, (0.1,0.36), (0.34,0.12) >, < B̆4, (0.26,0.15), (0.12,0.2) > }. 

Definition 9. Intersection of two RIFS 

The intersection of two RIFS (𝛿̆, 𝐺̆1) and (𝛿̆, 𝐺̆2)is denoted by (𝛿̆, 𝐺̆1) ∩ (𝛿̆, 𝐺̆2) and it is defined as 

(𝛿̆, 𝐺̆1) ∩ (𝛿̆, 𝐺̆2) = (𝛿̆, 𝛶̆  ), where Ῠ = 𝐺̆1 ∩ 𝐺̆2, and truth and falsemembership of (𝛿̆, Ῠ ̆) is defined in 

such a way that 
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TῨ(δ̆) = min ( 
  
  
 

∑sup  Tη̆1

ω (δ ̆)

α

ω=1

,∑sup  Tη̆2

ω (δ ̆)

α

ω=1

) 
  
  
 

, 

FῨ(δ̆) = max
( 
  
  
 
 

∑supFη̆1

λ (δ ̆)

β

λ=1

,∑supFη̆2

λ (δ ̆)

β

λ=1
) 
  
  
 
 

. 

Remark 4. The intersection of two families of RIFS (𝛿̆, 𝐺̆1

𝑖
) and (𝛿̆, 𝐺̆2

𝑖 )is denoted by (𝛿̆, 𝐺̆1
𝑖 ) ∩ (𝛿̆, 𝐺̆2

𝑖 ) 

and it is defined as(𝛿̆, 𝐺̆1
𝑖 ) ∩ (𝛿̆, 𝐺̆2

𝑖 ) = (𝛿̆, 𝛶̆ 𝑖), where 𝛶̆
𝑖
= 𝐺̆1

𝑖
∩ 𝐺̆2

𝑖
,   𝑖 = 1,2,3, … , 𝑛, and truth and false 

membership of (𝛿̆, 𝛶̆ 𝑖 ) is defined in such a way that 

TῨi(δ̆) = min ( 
  
  
 

∑sup  Tη̆1

ω (δ ̆)

α

ω=1

,∑sup  Tη̆2

ω (δ ̆)

α

ω=1

) 
  
  
 

, 

FῨi(δ̆) = max
( 
  
  
 
 

∑supFη̆1

λ (δ ̆)

β

λ=1

,∑supFη̆2

λ (δ ̆)

β

λ=1
) 
  
  
 
 

. 

Example 9. Consider the illustrative example, suppose that 

(δ̆, Ğ1) = { < B̆1, (0.13, 0.19),(0.24,0.1)>, 

 < B̆2, (0.2,0.25), (0.15,0.24) >, 

< B̆3, (0.1,0.36), (0.34,0.12) >, < B̆4, (0.16,0.14), (0.23,0.37) > }, 

and 

(𝛿, 𝐺̆2) = { < 𝐵̆1, (0.2,0.3),(0.3, 0.15)>,  

< 𝐵̆2, (0.32,0.38), (0.1,0.04) >, 

< 𝐵̆3, (0.01,0.16), (0.5,0.2) >, < 𝐵̆4, (0.26,0.15), (0.12,0.2) > }, 

be two RIFS. Then the intersection of RIFS (𝛿̆, 𝐺̆1) and (𝛿̆, 𝐺̆2)is given as 

(δ̆, Ῠ ) = { < B̆1, (0.13, 0.19),(0.24, 0.1)>,  

< B̆2, (0.2,0.25), (0.15,0.24) >, 

< B̆3, (0.01,0.16), (0.5,0.2) >, < B̆4, (0.16,0.14), (0.23,0.37) > }. 

Definition 10. Extended intersection of two RIFS 

The intersection of two RIFS (𝛿̆, 𝐺̆1) and (𝛿̆, 𝐺̆2)is denoted by (𝛿̆, 𝐺̆1) ∩𝜀 (𝛿̆, 𝐺̆2) and it is defined as 

(𝛿̆, 𝐺̆1) ∩𝜀 (𝛿̆, 𝐺̆2) = (𝛿̆, Ῠ ), where Ῠ = 𝐺̆1 ∪ 𝐺̆2, and truth and falsemembership of (𝛿̆, Ῠ ̆) is defined in 

such a way that 

TῨ(δ̆) = min ( 
  
  
 

∑sup  Tη̆1

ω (δ ̆)

α

ω=1

,∑sup  Tη̆2

ω(δ ̆)

α

ω=1

) 
  
  
 

, 
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FῨ(δ̆) = max
( 
  
  
 
 

∑supFη̆1

λ (δ ̆)

β

λ=1

,∑supFη̆2

λ (δ ̆)

β

λ=1
) 
  
  
 
 

. 

Remark 5. The extended intersection of two families of RIFS (𝛿̆, 𝐺̆1

𝑖
) and (𝛿̆, 𝐺̆2

𝑖 )is denoted by (𝛿̆,

𝐺̆1
𝑖 ) ∩𝜀 (𝛿̆, 𝐺̆2

𝑖 ) and it isdefined as(𝛿̆, 𝐺̆1
𝑖 ) ∩𝜀 (𝛿̆, 𝐺̆2

𝑖 ) = (𝛿̆, 𝛶̆ 𝑖), where 𝛶̆ 𝑖 = 𝐺̆1
𝑖 ∪ 𝐺̆2

𝑖 ,   𝑖 = 1,2,3, … , 𝑛, and 

truth and false membership of (𝛿̆, 𝛶̆ 𝑖 ) is defined in such a way that 

TῨi(δ̆) = min ( 
  
  
 

∑sup  Tη̆1

ω (δ ̆)

α

ω=1

,∑sup  Tη̆2

ω (δ ̆)

α

ω=1

) 
  
  
 

, 

FῨi(δ̆) = max
( 
  
  
 
 

∑supFη̆1

λ (δ ̆)

β

λ=1

,∑supFη̆2

λ (δ ̆)

β

λ=1
) 
  
  
 
 

. 

Example 10. Consider the illustrative example, suppose that 

(δ̆, Ğ1) = { < B̆1, (0.13, 0.19),(0.24,0.1)>,  

< B̆2, (0.2,0.25), (0.15,0.24) >, 

< B̆3, (0.1,0.36), (0.34,0.12) > }, 

and 

(𝛿̆, 𝐺̆2) = {< 𝐵̆3, (0.01,0.16), (0.5,0.2) >, < 𝐵̆4, (0.26,0.15), (0.12,0.2) > }, be two RIFS. Then the extended 

intersection of RIFS (𝛿̆, 𝐺̆1) and (𝛿̆, 𝐺̆2) is given as 

(δ̆, Ῠ ) = { < B̆1, (0.13,0.19),(0.24,0.1)>,< B̆2, (0.2,0.25), (0.15,0.24) >, 

< B̆3, (0.01,0.16), (0.5,0.2) >, < B̆4, (0.26,0.15), (0.12,0.2) > }. 

Definition 11. Restricted union of two RIFS 

The restricted union of two RIFS (𝛿̆, 𝐺̆1) and (𝛿̆, 𝐺̆2)is denoted by (𝛿̆, 𝐺̆1) ∪𝑅 (𝛿̆, 𝐺̆2) and it isdefined 

as (𝛿̆, 𝐺̆1) ∪𝑅 (𝛿̆, 𝐺̆2) = (𝛿̆, 𝛶̆  ), where 𝛶̆ = 𝐺̆1 ∩𝑅 𝐺̆2, and truth and falsemembership of (𝛿̆, 𝛶̆  ̆) is 

defined in such a way that 

TῨ(δ̆) = max ( 
  
  
 

∑sup  Tη̆1

ω (δ ̆)

α

ω=1

,∑sup  Tη̆2

ω (δ ̆)

α

ω=1

) 
  
  
 

. 

FῨ(δ̆) = min
( 
  
  
 
 

∑supFη̆1

λ (δ ̆)

β

λ=1

,∑supFη̆2

λ (δ ̆)

β

λ=1
) 
  
  
 
 

. 

Remark 6. The restricted union of two families of RIFS (𝛿̆, 𝐺̆1

𝑖
) and (𝛿̆, 𝐺̆2

𝑖 )is denoted by 

(𝛿̆, 𝐺̆1
𝑖 ) ∪𝑅 (𝛿̆, 𝐺̆2

𝑖 ) and it is defined as (𝛿̆, 𝐺̆1
𝑖 ) ∪𝑅 (𝛿̆, 𝐺̆2

𝑖 ) = (𝛿̆, 𝛶̆ 𝑖), where 𝛶̆ 𝑖 = 𝐺̆1
𝑖 ∩𝑅 𝐺̆2 

𝑖 , 𝑖 =

1,2,3, … , 𝑛, and truth and false membership of (𝛿̆, 𝛶̆ 𝑖 ) is defined in such a way that 
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TῨi(δ̆) = max ( 
  
  
 

∑sup  Tη̆1

ω (δ ̆)

α

ω=1

,∑sup  Tη̆2

ω (δ ̆)

α

ω=1

) 
  
  
 

, 

FῨi(δ̆) = min
( 
  
  
 
 

∑supFη̆1

λ (δ ̆)

β

λ=1

,∑supFη̆2

λ (δ ̆)

β

λ=1
) 
  
  
 
 

. 

Example 11. Consider the illustrative example, suppose that 

(δ̆, Ğ1) = { < B̆1, (0.13, 0.19),(0.24,0.1)>,  

< B̆2, (0.2,0.25), (0.15,0.24) >, 

< B̆3, (0.1,0.36), (0.34,0.12) > }, 

and (𝛿̆, 𝐺̆2) = {< 𝐵̆3, (0.01,0.16), (0.5,0.2) >, < 𝐵̆4, (0.26,0.15), (0.12,0.2) > }, be two RIFS. Then the restricted 

union of RIFS (𝛿̆, 𝐺̆1) and (𝛿̆, 𝐺̆2)is given as 

(δ̆, Ῠ ) = {< B̆3, (0.1,0.36), (0.34,0.12) > }. 

Definition 12. Restricted intersection of two RIFS 

The restricted intersection of two RIFS (𝛿̆, 𝐺̆1) and (𝛿̆, 𝐺̆2)is denoted by (𝛿̆, 𝐺̆1) ∩𝑅 (𝛿̆, 𝐺̆2) and it isdefined 

as (𝛿̆, 𝐺̆1) ∩𝑅 (𝛿̆, 𝐺̆2) = (𝛿̆, 𝛶̆  ), where 𝛶̆ = 𝐺̆1 ∩𝑅 𝐺̆2, and truth and false membership of (𝛿̆, 𝛶̆  ̆) is defined 

in such a way that 

TῨ(δ̆) = min (∑ sup  Tη̆1

ω (δ ̆)

α

ω=1

, ∑ sup  Tη̆2

ω (δ ̆)

α

ω=1

), 

FῨ(δ̆) = max (∑ sup Fη̆1

λ (δ ̆)

β

λ=1

, ∑ sup Fη̆2

λ (δ ̆)

β

λ=1

). 

Remark 7. The restricted intersection of two families of RIFS (𝛿̆, 𝐺̆1

𝑖
) and (𝛿̆, 𝐺̆2

𝑖 )is denoted by 

(𝛿̆, 𝐺̆1
𝑖 ) ∩𝑅 (𝛿̆, 𝐺̆2

𝑖 ) and it isdefined as (𝛿̆, 𝐺̆1
𝑖 ) ∩𝑅 (𝛿̆, 𝐺̆2

𝑖 ) = (𝛿̆, 𝛶̆ 𝑖), where 𝛶̆ 𝑖 = 𝐺̆1
𝑖 ∩𝑅 𝐺̆2 

𝑖 , 𝑖 = 1,2,3,… , 𝑛, 

and truth and false membership of (𝛿̆, 𝛶̆ 𝑖 ) is defined in such a way that 

TῨi(δ̆) = min ( 
  
  
 

∑sup  Tη̆1

ω (δ ̆)

α

ω=1

,∑sup  Tη̆2

ω (δ ̆)

α

ω=1

) 
  
  
 

, 

FῨi(δ̆) = max
( 
  
  
 
 

∑supFη̆1

λ (δ ̆)

β

λ=1

,∑supFη̆2

λ (δ ̆)

β

λ=1
) 
  
  
 
 

. 
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Example 12. Consider the illustrative example, suppose that 

(δ̆, Ğ1) = { < B̆1, (0.13, 0.19),(0.24,0.1)>,  

< B̆2, (0.2,0.25), (0.15,0.24) >, 

< B̆3, (0.1,0.36), (0.34,0.12) > }, 

and (𝛿̆, 𝐺̆2) = {< 𝐵̆2, (0.32,0.38), (0.1,0.04) >, < 𝐵̆4, (0.26,0.15), (0.12,0.2) > }, 

be two RIFS. Then the restricted intersection of RIFS (𝛿̆, 𝐺̆1) and (𝛿̆, 𝐺̆2)is given as 

(δ̆, Ῠ ) = {< B̆2, (0.2,0.25), (0.15,0.24) > }. 

Definition 13. Restricted difference of two RIFS 

The restricted difference of two RIFS (𝛿̆, 𝐺̆1) and (𝛿̆, 𝐺̆2)is denoted by (𝛿̆, 𝐺̆1)−𝑅(𝛿̆, 𝐺̆2) and it is 

defined as (𝛿̆, 𝐺̆1)−𝑅(𝛿̆, 𝐺̆2) = (𝛿̆, 𝛶̆  ), where 𝛶̆ = 𝐺̆1−𝑅𝐺̆2. 

Example 13. Consider the illustrative example, suppose that 

(δ̆, Ğ1) = { < B̆1, (0.13, 0.19),(0.24,0.1)>,  

< B̆2, (0.2,0.25), (0.15,0.24) >, 

< B̆3, (0.1,0.36), (0.34,0.12) >, < B̆4, (0.16,0.14), (0.23,0.37) > }, 

and 

(δ̆, Ğ2) = { < B̆1, (0.2,0.3),(0.3, 0.15)>,< B̆2, (0.32,0.38), (0.1,0.04) >, 

< B̆3, (0.01,0.16), (0.5,0.2) > }, 

be two RIFS. Then the restricted difference of RIFS (𝛿̆, 𝐺̆1) and (𝛿̆, 𝐺̆2)is given as 

(δ̆, Ῠ ) = {< B̆4, (0.16,0.14), (0.23,0.37) > }. 

5|Some Basic Laws of RIFS 

In this section, we prove some basic fundamental laws including idempotent law, identity law, 

domination law, De-Morgan law and commutative law with the help of illustrative example. 

5.1| Idempotent Law 

(δ̆, Ğ)  ∪ (δ̆, Ğ) =  (δ̆, Ğ) =  (δ̆, Ğ) ∪R (δ̆, Ğ). 

(δ̆, Ğ)  ∩ (δ̆, Ğ) =  (δ̆, Ğ) =  (δ̆, Ğ) ∩ε (δ̆, Ğ). 

Example 14. To prove (1) law, we consider illustrative example. For this, suppose that 

 



289 

 

A
 s

tu
d

y
 o

n
 f

u
n

d
a
m

e
n

ta
ls

 o
f 

re
fi

n
e
d

 i
n

tu
it

io
n

is
ti

c
 f

u
z
z
y
 s

e
t 

w
it

h
 s

o
m

e
 p

ro
p

e
rt

ie
s

 
(δ̆, Ğ) = { < B̆1, (0.13, 0.19),(0.24,0.1)>,  

< B̆2, (0.2,0.25), (0.15,0.24) >, 

< B̆3, (0.1,0.36), (0.34,0.12) >, < B̆4, (0.16,0.14), (0.23,0.37) > }. 

One can observe 

(δ̆, Ğ)  ∪ (δ̆, Ğ) = { < B̆1, (0.13, 0.19),(0.24,0.1)>,  

< B̆2, (0.2,0.25), (0.15,0.24) >, 

< B̆3, (0.1,0.36), (0.34,0.12) >, < B̆4, (0.16,0.14), (0.23,0.37) > } = (δ̆, Ğ) =  (δ̆, Ğ) ∪R (δ̆, Ğ). 

Similarly, we can prove (2). 

5.2| Identity Law 

(δ̆, Ğ)  ∪ ∅̆ =  (δ̆, Ğ) =  (δ̆, Ğ) ∪R ∅̆. 

(δ̆, Ğ)  ∩ Ŭ =  (δ̆, Ğ) =  (δ̆, Ğ) ∩ε U.̆ 

Example 15. To prove (1) law, we consider illustrative example. For this, suppose that 

(δ̆, Ğ) = { < B̆1, (0.13, 0.19),(0.24,0.1)>,  

< B̆2, (0.2,0.25), (0.15,0.24) >, 

< B̆3, (0.1,0.36), (0.34,0.12) >, < B̆4, (0.16,0.14), (0.23,0.37) > }. 

One can observe 

(δ̆, Ğ)  ∪ ∅̆ = { < B̆1, (0.13, 0.19),(0.24,0.1)>, 

 < B̆2, (0.2,0.25), (0.15,0.24) >, 

< 𝐵̆3, (0.1,0.36), (0.34,0.12) >, < 𝐵̆4, (0.16,0.14), (0.23,0.37) > } = (𝛿̆, 𝐺̆) =  (𝛿̆, 𝐺̆) ∪𝑅 ∅̆. 

Similarly, we can Prove (2). 

5.3| Domination Law 

(δ̆, Ğ)  ∪ Ŭ =  Ŭ =  (δ̆, Ğ) ∪R Ŭ. 

(δ̆, Ğ)  ∩ ∅̆ =  ∅̆ =  (δ̆, Ğ) ∩ε ∅̆. 

Example 16. To Prove (1) law, we consider illustrative example. For this, suppose that 

(δ̆, Ğ) = { < B̆1, (0.13, 0.19), (0.24,0.1)>,  

< B̆2, (0.2,0.25), (0.15,0.24) >, 

< B̆3, (0.1,0.36), (0.34,0.12) >, < B̆4, (0.16,0.14), (0.23,0.37) > }. 
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One can observe 

(δ̆, Ğ)  ∪ Ŭ = { < B̆1, (0.13, 0.19),(0.24,0.1)>, 

 < B̆2, (0.2,0.25), (0.15,0.24) >, 

< B̆3, (0.1,0.36), (0.34,0.12) >, < B̆4, (0.16,0.14), (0.23,0.37) > }  ∪ Ŭ 

= Ŭ =  (δ̆, Ğ) ∪R Ŭ. 

Similarly, we can Prove (2). 

5.4| De-Morgan Law 

((δ̆, Ğ1)  ∪ (δ̆, Ğ2))
c

= (δ̆, Ğ1)
c
∩ε (δ̆, Ğ2)

c
. 

((δ̆, Ğ1) ∩ε (δ̆, Ğ2))
c

= (δ̆, Ğ1)
c
∪ (δ̆, Ğ2)

c
. 

Example 17. To prove (1) law, we consider illustrative example. For this, suppose that L.H.S is 

(δ̆, Ğ1)  ∪ (δ̆, Ğ2) = { < B̆1, (0.2, 0.3),(0.24,0.1)>,  

< B̆2, (0.32,0.38), (0.1,0.04) >, 

< B̆3, (0.1,0.36), (0.34,0.12) >, < B̆4, (0.26,0.15), (0.12,0.2) > }. 

Then 

((δ̆, Ğ1)  ∪ (δ̆, Ğ2))
c

= { < B̆1, (0.24,0.1), (0.2,0.3)>,  

< B̆2, (0.1,0.04), (0.32,0.38) >, 

< B̆3, (0.34,0.12), (0.1,0.36) >, < B̆4, (0.12,0.2), (0.26,0.15) >}. 

Now consider R.H.S. 

(δ̆, Ğ1)
c
∩ε (δ̆, Ğ2)

c
= { < B̆1, (0.24,0.1), (0.2,0.3)>,  

< B̆2, (0.1,0.04), (0.32,0.38) >, 

< B̆3, (0.34,0.12), (0.1,0.36) >, < B̆4, (0.12,0.2), (0.26,0.15) >}. 

From this, it is clear that L.H.S.=R.H.S. Similarly, we can prove (2). 

5.5| Commutative Law 

(δ̆, Ğ1)  ∪ (δ̆, Ğ2) =  (δ̆, Ğ2)  ∪ (δ̆, Ğ1). 

(δ̆, Ğ1) ∪R (δ̆, Ğ2) = (δ̆, Ğ2) ∪R (δ̆, Ğ1). 

(δ̆, Ğ1)  ∩ (δ̆, Ğ2) = (δ̆, Ğ2)  ∩ (δ̆, Ğ1). 
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(δ̆, Ğ1) ∩ε (δ̆, Ğ2) = (δ̆, Ğ2) ∩ε (δ̆, Ğ1). 

Example 18. To Prove (1) law, we consider illustrative example. For this, suppose that 

L.H.S: 

(δ̆, Ğ1)  ∪ (δ̆, Ğ2) = { < B̆1, (0.2, 0.3),(0.24,0.1)>,  

< B̆2, (0.32,0.38), (0.1,0.04) >, 

< B̆3, (0.1,0.36), (0.34,0.12) >, < B̆4, (0.26,0.15), (0.12,0.2) > }. 

R.H.S: 

(δ̆, Ğ2)  ∪ (δ̆, Ğ1) = { < B̆1, (0.2, 0.3), (0.24,0.1)>,  

< B̆2, (0.32,0.38), (0.1,0.04) >, 

< B̆3, (0.1,0.36), (0.34,0.12) >, < B̆4, (0.26,0.15), (0.12,0.2) > }. 

From above equation, we meet the required result. Similarly, we can prove the remaining. 

6| Conclusion 

In this article, the basic fundamentals of refined intuitionistic fuzzy Set (RIFS) i.e. RIF subset, Equal RIFS, 

Complement of RIFS, Null RIFS and aggregation operators i.e. union, intersection, restricted intersection, 

extended union, extended intersection and restricted difference of two RIFS is defined. All these 

fundamentals are explained using an illustrative example. Further extension can be sought through 

developing similarity measures for comparison purposes. 
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