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Abstract

In this papet, we define the term " n-fuzzy subgroup" and show that every fuzzy subgroup is a n-fuzzy subgroup. We
define some of the algebraic properties of the concept of n-fuzzy cosets. Furthermore, we initiate the study of the 7-
fuzzy normal subgroup and the quotient group with respect to the n-fuzzy normal subgroup and demonstrate some of
their various group theoretical properties.
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1 | Introduction

@@ Fuzzy sets were first studied by Zadeh in [12], and since there has been an incredible attention in this
Licensee Journal

particular branch of mathematics because of its many applications in fields like engineering

of Fuzzy Extensionand | 34 computer science as well as the analysis of social and economic behaviour. Rosenfeld [8]

Applications. Thi . . .

ppucations. TS introduced the concept of fuzzy groups on fuzzy sets in and developed number of basic results for
article is an open access f I f h f b d . al b . . f h F
article distributed under uzzy groups. In fact, the fuzzy subgroups admit many algebraic properties of the groups. For more

the terms and conditions | details, we refer to [9], [10]. Anthony in [2] redefined the concept of fuzzy subgroup. Later, Das [4]
of the Creative Commons | modified Zadeh and Rosenfeld's work by defining the level subgroups of a given group. The concept

Attribution (CC BY) of fuzzy homomorphism between two groups was defined by Chakraborty and Kharte [3], they also
license examined how it affected fuzzy subgroups. Additionally, Ajmal [1] presented the concept of the
(http://creativecommons.

typical kernel of a group homomorphism in fuzzy subgroups. The most recent research on the use
orgllicenses/by/.0). of fuzzy sets in various algebraic structures may be found in [11], [13]-[16]. Gupta and Qi [5]
developed the notion of T operators on fuzzy sets. The theory of fuzzy operators plays a key role in
various disciplines, specifically in the field of engineering and artificial intelligence. This significant
application of fuzzy operators motivates us to familiarize the concept of a fuzzy set based on these

operators.

In this paper, a fuzzy set is defined in relation to a Np-operator. With the help of fuzzy subset, we

propose a new version of fuzzy subgroup called it -fuzzy subgroup and analyse its supplementary
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theory, derive analogues for several fundamental group theoretic results. Using the classical
homomorphism, we demonstrate that the homomorphic image (pre-image) of n-fuzzy subgroup is -
fuzzy subgroup. Furthermore, we introduce the concept of n—fuzzy cosets and fuzzy normal subgroup.
We also define isomorphism between the quotient group with respect to the normal subgroup G,1.
Since 1 —fuzzy subgroup is more abstract structure then the fuzzy subgroup and the results in this
version are more general than the existing results in the literature. Throughout in this paper, we will
refer to FS(G) and FNS(G) as the fuzzy subgroup and fuzzy normal subgroup of a group G, respectively.

2 | Preliminaries

We review some of these core concepts which are relevant to the rest of our discussion.
Definition 1 ([6]). Let E be a nonempty set. A mapping p: E — [0,1] is called a fuzzy subset of E.

Definition 2 ([6]). Let p and ¢ be fuzzy sets of a set E. Their intersection p N ¢ and union pU o are
fuzzy sets of E defined by

L. (pno)ay) =min{ p(ay),o(a;)} forall a, €E.
II. (pUo)(ay)= max[ p(al),a(al)] forall a,€E.

Definition 3 ([6]). Let p be a fuzzy set of a set E. For y € [0,1], the set p, = {alz a; € E,p(ay) = 7/} is
called level subset of p.

Definition 4 ([6]). Let p be a fuzzy subset of a group G. Then p is called a FS(G) if

L playay) = min{p(al),p(az)} forall a,a, € G.
IL p(al‘l) > p(ay) foralla, €G.

Lemma 1 ([6]). Let p : G — [0,1] be a FS(G), for all a; € G, we have

I. p(e) > p(ay) foralla, €G.
1L p(al‘l) = p(ay).

Theotem 1 ([4]). Let p be a fuzzy subset of group G then p is FS(G) if and only if the level subset p,,
for y € [0,1], p(e) > y, is subgroup of G, where e is an identity of G.

Definition 5 ([7]). A FS(G) p is called a FNS(G) if p(a,a,) = p(aay) forall a;,a, € G.

Definition 6 ([7]). Let p be a FS(G). For any a; € G, define a map p,, : G — [0,1] as follows:

L p,(Q= p(gal‘l) forall g € G.
1. pg, is called fuzzy coset of G determined by a; and p.

Definition 7 ([5]). A map T:[0,1] X [0,1] — [0,1] define by (ay, a, ) — min{ay, a,} is T—norm iff
forall ay, a,,a5,a, €[0,1]

L T(ay,ay) = T(ay, a),
1. T(ay, T(ay, as)) = T(T(ay, a3), a3),
L. T(a,1)=T(@A,ay) =1,
IV. Ifa; <aganda, < a, then T(ay, a,) < T(az, ay).
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3 | n-Fuzzy Subsets and Their Properties

Definition 8. Let Nt be an operator defined as Nt : [0,1] X [0,1] — [0,1] by
Nr(aj,ap) =min{l —a;,1-a,} foralla;, a, € [0,1].
Infect, Ny admits the properties below, for all a;, a,,a3,a, € [0,1 ]:
L. Nr(ay,a;) = Ny(ay, aq),
IL NT(alll) = NT(ll al) =0,
111 If&ll <az and Ay < dy, then NT(ﬂl,ﬂz) > NT(afS/ a4).

The operator N is non-associative.

Definition 9. Let p: X — [0,1] be fuzzy subset of X and n € [0,1], the fuzzy subset p" of X (w. r. t fuzzy
set p: X — [0,1]) denotes the n-fuzzy subset of X and is defined as follows:

pl(a;) = min {1 -p(ay),1-n } foralla; € X.

Example 1. Let A = {set of young people} define p fuzzy set on A as follows:

(1 if a; <25,
|40 —
palar) =4 15a1, if 25<a; <40,
|
L 0, if a; > 40.

Take n = 0.6, now for a; = 20, we have p”A(al) = 0. For a, =30, we have p"A(az) = 0.333 and for a3 =
45, we have p”A(a3) =04.

Remark 1: It is important to note that one can obtain the negation of classical fuzzy subset p(a;) by
choosing the value of n =0 in above definition whereas the case become crisp for the choice of n =1.
These algebraic facts lead to note that the case illustrates the n-fuzzy version with respect to any fuzzy
subset for the value of 17, when 1 € (0,1).

Definition 10. Let &G — G where G, G’ are groups and p and ¢ be 1-fuzzy subsets of G and G’
respectively. Then &(p) and £7%(0") are the image of 1-fuzzy subset p” and the inverse image of n-fuzzy
subset o7 respectively, defined as:

) -1 |
L &(pM)(ay) = {OS’uP p(ay) 1a; € £ (ay), 1];}(55(1‘1(2)2;:%&
. &Xo"(ay) = 0"(&(ay)) forall ag € G.

Example 2. Let &V, — R where V, = {1, a1, a,, a;a,} defined as follows:

&) =1, &ay) =2, &(ay) = -2 and &(aya,) = 4. Define fuzzy set p on V, given by p(1) =1, p(a;) = 0.8,
p(ay) = 0.4 and p(a;a,) = 0.5 define fuzzy set 0 on R as follows:

o(a)) =—

las|
Take = 0.3, s0 &(p"(ay)) = {0, 02, 0.7, 0.5} and &7 (0™(ay)) = {0, 0.5, 0.7}

Theorem 2.

I.  Let p and 0 be any two fuzzy subsets of a set E then (p Ng)" = pTN o’
II.  Let p and o be two fuzzy subsets of a set P and Q respectively and & : P — Q be a mapping, then



n

— &M = (&(p) -
- S = ()"

Proof: By Definition 9, we have

(pNo)(a;) = min {1 -(pNno)ay),1-7 }, where a; € E and 1 € [0,1].
= min {1 — min { pay), oa)},1-n ]}

= min { min {1 - p(ay), 1 -7}, min{l - o(ay),1 -1 }}
= min { p(a;) ,0™a)}= (p" N 6")(a;) forall a, € E.
Consequently, (p" N a™)(a,)=p" N o™,
L &(pM(ap) = sup { p(ay) : &(ay) = ay }
= sup {min {1 - p(a;),1 -7 |}
= min {sup {1 - p(ar), 1 -7 |}
= min {1 - &(p)(ay),1 -1}
= (&))" foralla, € Q.
Hence, &(p7) = (E(P))q-
II.  From Definition 9, we have
ENp")ay) = (péa) = min{l - p(&(@)), 1 -1} = min 1 - &p(a;), 11}
= () (@) forallay €P.
Hence, E™(p" = (£7(p)) -
4 | n-Fuzzy Subgroups

This section deals with the concept of n-FS(G) and 1-FNS(G). We prove that every FS(G) (FNS(G)) is

also n-FS(G) (FNS(G)) but converse need not to be true. The concept of n-fuzzy coset is defined and

discussed deeply. Moreover, applying the idea of 1 — FNS(G), we introduced the quotient group with

respect to FNS(G). This leads us to develop a natural homomorphism with respect to 7 — FNS(G) from

a group G to its quotient group. Additionally, we discover the homomorphic image and pre-image of 7 -

FS(G) (n—=FENS(G). We conclude this section by establishing an isomorphism between the quotient
G

roup — and =
g p pV] Gpn‘

Definition 11. Let G be a group and p: G — [0, 1] be a fuzzy subset G. Let 1 € [0,1], then p is called n-

FS(G) if p"is FS(G). In other words, p is n-FS(G) if p admits the following properties, for all a;, a, €
G:
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L p'ayay) > min { p'(ay), p(ay)}.

o) -

b Puzzy. Bt Appl Example 3. Let p be a fuzzy subset of the group G = V; = {1, 4y, a,, a,a,} defined as p(1) = 0.7 and p(a;) =
p(ay) = plaay) = 0.9.
69

Define n-fuzzy subset p of G for n = 0.8 as follows:
p(1) = 0.2 and p"(a;) = p"ay) = p"(a;a,) = 0.1.
Clearly, p" is n-FS(G).

Remark 2: Note that, p is §-FS(G) for any choice of 1 in each of the following case

I p(aa;) = n >min {p(ul), p(uz)}.
1L 12 playay) >min {p(ay), p(az)}.

UL p(aya,) >min {p(ay), plaz)} > 1.
IV.  Forn =0, we get the complement of classical fuzzy subgroup.

Proposition 1. Let p be n-FS(G). Then the following statements hold:

- pay) < p'e) forall ay; € G and e is identity element of G.
- pNayayt) = p'(e) gives p'(a;) = p"(ay) forall ay, a, € G.

Proof:

On algebraic aspects of )-fuzzy subgroups

I. Since p”(alal‘l) = p'l(e) and also p”(alal‘l) = min {p”(al), p”(al‘l)]
= min{ p(ay), p(a)} = p(ay).

This implies that p™(a;) < p'(e), for all a, € G.

1. Since we have p"(a;) = p"(a,a,'a,) > min {p’?(alaz’l),p”(az)}.

Then by our assumption we have p’(a;) > min {p"(e), p"(a,)} which implies that

p'(ar) 2 p'(az).
Similarly, p(ay) = p(aa; a;) > min {p" (aZal‘l), p"(a1)} then by our assumption, we have p(a,) > min

{p"(e), p(ay)} = p"(ay), which implies that p"(ay) = p"(ay).
Hence, p(a;) = p"(ay).

The next result leads to note that every FS(G) is n-FS(G).
Proposition 2. Every FS(G) is also 7 — FS(G).

Proof: Let p be a FS(G). Consider, p"(a;4,) = min {1 - playa,),1 -1 }, where n € [0,1] and ay,a, € G.

> min {1 - min { p(ay), p(ax)},1 -1}



= min{min {1 - p(ay), 1-n}, min{l - p(ay),1 -7 }}:min {p”(al), p”(az)}.
Thus, we have p'(a;a;) > min{ p'(ay), p”(tlz)}.

Moreover, p”(al‘l) = min {1 - p(al‘l),l -7 } = min {1 - pla;),1-7 ] = pay).
This implies that p is -FS(G).
Remark 3: The converse of the aforementioned proposition must not be true.

Example 4. Let G = S; = { (1),(12),(13),(23),123),(132)},

p((1)) =04,p(12) =p(@3) =p(23) =05,
And

p((123)) = p((132)) = 06.
Consider the n-fuzzy set for 1 = 0.55 as follows:

p1((1)) = 045, p7((12)) = p7((1 3)) = p"((2 3)) = 0.45,
And

p1((123)) = p"((132)) = 0.4.

Clearly, the fuzzy subset p is 1 - FS(G) .

Moteover, p is not FS(G) because all possible level subset pog=1{(1),(12),(13),(23)}, pos=
{(12),(13),(23)}and pog =1{ (123),(132)}.

Poas Pos and pog are not subgroups of S; = G.

Proposition 3. Let G be a group and p be its fuzzy subset such that p(a;) = p(al’l) forall a; € G.
Letn > m, where n € [0,1] and m = sup {p(al),al € G}, then p is also 7-FS(G).

Proof: Since, we have n > m. So, n > sup {p(al), a € G}, which implies n > p(a;) forall a; € G.
So, we have p(a;) = min {1 -pla),1-n } =1-n foralla, € G.

This implies that p"(a;4,) > min [p"(al), p”(az)] forall aj,a, € G.

Also, p"(a;7) = p(ay).

Hence, p is 1-FS(G).

Proposition 4. Let p and ¢ be any two 7-FS(G). Then p N o is also n-FS(G).

Proof: Let p and o be two -FS(G) of a group G and let a1,4, € G.
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Since, (p N0)"(a;) = (p" N 6")(a;) hold, then we have
,”’- (p No)l(ajay) = (p"NoM(ajay).

So, (p" N 0")(a1a,) = min { p(aya;) ,0"(a,a,)}

I Fuzzy. Ext. Appl

71 > min{min { p'(a;), p'(a,)}, min| 0"(ay), 0"(az) }
= min{min{ p'(a;), 0"(a;)}, min{ p'(ay), o"(a;) }}
= min {(p" N a™)(a), (p" N 0")(a,)}.
This implies that (p" N 0)(ab) > min {(p" N 0™)(a), (p" N 6")(ay)}.

Moreover, (p N o)”(al‘l) =(p"N o”)(al‘l) = min {p"(a,),

p'(a; ™)} = min {p"(ay), p'(ay)}-

We have (p N a)”(al‘l) =(p No)lay).

Consequently, p N o is -FS(G).

Corollary 1. The intersection of any finite number of 7-FS(G) is also -FS(G).
Proposition 5. Let p and 0 be any two -FS(G). Then p U ¢ need not to be n-FS(G).

Example 5. Let G = Qg = {+1, +i, +, £k }. Take two subgroups of G that are

On algebraic aspects of )-fuzzy subgroups

H; = {41, i} and H, = { £1, £j}.

Let p and o be two fuzzy subsets of G as:

(a ) _ {02, lf ap € Hl,
plar) = 0.9, otherwise.

And

_ 0.3, if a € HZ,
ofar) = {1, otherwise.

Since, p"(a)= min {1 —-pa),1-n }

Define n-fuzzy subsets p and ¢” for = 0, as follows:

0 _ 0.8, if a € Hl/
p-(ar) = {0.1, otherwise.

And
0 _ 0.7, if a; € Hz,
o(ay) = {0, otherwise.
It is easy to check that p® and ¢° are 0-FS(G).
Now, we define p° U ¢? as:

(p° U 6°)(a,) = max{ p°(ay),0°(ay)},

So, we have



0.8, lf a, € Hll
(P° V) (ay) = {07/ if a1 € Hy\Hj,
0.1, otherwise.

Leta; =iand a, =7,

Observe that (p° U a?)(i) = 0.8 and (p° U a?)(j) = 0.7.

So, min {(p° U a®)(i), (p° U a)(j)} = 0.7, but (p° U a°)(ij) = (p° U o®)(k) = 0.1.

This implies that
(p° Ua®)i) < min {(p° U?)(i), (00 Ua")())-

Hence, p® U ¢ is not 0-FS(G).

Example 6. Let G = Qg = {+1, +i, +, £k }. Take a subgroup of G thatis Hy = { 1, +i}.

Let p and o be two fuzzy subsets of G as:

(a ) _ {03, if a; € Hl/
play) = 0.9, otherwise.

And

_ 0.2, if a € Hl/
ofaq) = {1, otherwise.

Then we have po and ¢? as follows:
0 _ 0.7, if a; € Hl/
p(ar) = {0.1, otherwise.

And
0.8 ifa; e H
0 — ’ 1 1,
o(ay) = {O, otherwise.

Then we have

08,  ifameH
0 0 = ! ! o
(p” V) ay) = {0.1, otherwise.

It can be easily seen that p° U ¢? is 0 — FS(G).

Definition 12. Let p be n-FS(G), for any a; € G define n-fuzzy left coset a;p" of p in G as follows:

a;p"(x) = min [1 - p(al‘lx),l -1 }for all a;,x € G.
Similarly, we define n-fuzzy right coset pa; of p in G as follows:

pa;(x) = min {1 - p(xa{l),l -n }for all a;,x € G.

Example 7. Let p be a fuzzy subset of the group G = Z, = {0,1,2, 3} defined as

p(0) =0.2, p(2) = 0.4 and p(1) = p(3) = 0.4.
Define n-fuzzy subset p" of G for n = 0.5 as follows:

p"(0) = 0.5, p"(2) = 0.5 and p"(1) = p'(3) = 0.4.
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Clearly, p" is n-FS(G). Consider n-fuzzy left coset of p by the element 2 € Z, as follows:

] 04, ifa, € O/2 s
2 + p'(a;) = min {1 —p@2+a)1-1 ] - {0,5, / ;theiwisi.

Similatly, define n-fuzzy right coset of G.

Proposition 6. Let p be n- FS(G). Then p be n — ENS(G) if and only if a;p"(x) = p"ay(x) forall a; € G.
Note: a;p"(x) = p’i(ul‘lx) and p'la; (x) = p”(xal‘l) forall x € G.

The following result leads to note that every FNS(G) is - FNS(G).

Example 8. In view of Example 7 n- FS(G) is a -FNS(G), because its all n-fuzzy left cosets and n-fuzzy

right cosets are equal. For instance, consider

04, ifa; €10,2},

2+pMag) =pl(a))+2= {0.5, otherwise.

Proposition 7. Every FNS(G) is also n-FNS(G).

Proof: Suppose that p is FNS(G) which implies that a,p = pa;.

Then for any x € G we have p(al‘lx) = p(xal‘l). So, we have

min [1 - p(al‘lx),l -7 } = min {1 - p(xal‘l),l -7 ]

This implies that a,p"(x) = p"ay(x) for all x € G. Consequently, p is 7-FNS(G).
Note that the converse of above tesult need not to be true.

Example 9. et G=D;=<a,b: a®> =1 =e, ba=ab >.

Define a fuzzy subset p of G as follows:

(a) = {0.3, ifae<b>,
Pla) =101 otherwise.

Take 1 = 0.6 then we have p"(a) =1-1n forallaeG.
amp"(g) = min {1 - p(ay7'g),1-1 )= 1-7

= min {1 - p(gal’l),l -7 } = p'ay(g).

Then a,p"(g) = p"a;(g) which implies that p is -FNS(G). But it can be seen that p is not FNS(G). This is
because p((a?)(ab)) = 0.3 and p((ab)(@?)) = 0.1. i.e. p(a~'g) = p(ga™!) not hold.

Proposition 8. Let p be 1-FINS(G). Then p"(b‘lalb) = pay) ot p"(a1a;) = p™(aya,) hold, for all a;,a, € G.
Proof: Since, we have p be 7 — FNS(G) then we have a,p" = pa; for all a, € G.

This implies that alp”(az‘l) = p’7a1(a2‘1) forall a,™! € G.

= min {1 - p(al‘laz‘l),l -7 ] = min {1 - p(a[lal‘l),l -1 } = p”(al‘laz‘l) = p”(az‘lal‘l).



Consequently, we have p”((azal)‘l) = p’i((alaz)‘l).

Hence, p™(aya,) = p'(a,ay).

Theorem 3. Let p be 7-FS(G). Then following statements are equivalent:

L.
IL.

III.
Iv.

Proposition 9. Let p be n-FS(G). Let > m, where 1 € [0,1] and m = sup {p(al),al € G}, then p is also

payay) = playap) forall ay,ay € G.
p”(alazal‘l) = pUay) forall aj,a, € G.
p”(alazal‘l) > p'(ay) forall aj,a, € G.

p”(alazal‘l) < p'ay) forall aj,a, € G.

1-ENS(G).

Proof: Since, we have > m, so n > sup {p(al),al € G}, which implies that n > p(ay) for all a, € G.

So, we have p"(a;) = min [1 -p(a),1-n } =1-n,

play(g) > min{l - p(gal‘l),l -1 } =1-n

Similarly, a;p"(g) > min[l - p(al‘lg),l -1 } =1-1.

This implies that a;p" = p"a; forall a; € G.

Hence, p is also n-FNS(G).

The following result illustrate that the set Gpn is infect a normal subgroup of G.

Proposition 10. Let p be n-FNS(G). Then the set define as Gn = { a, € G: p'(ay) = p'l(e) } 4G.

Proof: Since, G, is nonempty because e € G. Let ay, a, € G,

p”(alaz‘l) > min[ pay), p”(az‘l)] forallaj,a, € G

= min{ p(ay), p’?(az)} forall a;,a, € G

= min[ p'(e), p”(e)} forall aj,a, € G

= p’l(e)'

This implies that p"(a;a,71) > p(e).

Since, p' is FS(G) which implies that p"(a;2,7) < p'(e).

Hence, p"(alaz’l) = p'(e) implies that G, is subgroup of G.

Now we prove it is normal subgroup of G. Let a; € Gn and 4, € G, then we have

P"(ﬂzflﬂlﬂz) = p(ay) = p'l(e).
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Consequently, we have G,n 2 G.
Proposition 11. Let p be 1-FNS(G) of a group G. Then the following statements hold

L a;p"=ap" & a;7'ay € G,

Il play =pla, & aya,™" € G,
Proof:
1. Suppose that a;p" = a,p", then we have
p”(al‘laz) = min {1 - p(ul‘luz),l -1 }

= 11p"(a2)= a,p"(a,)

min {1 - p(az‘laz),l -7 }

min {1 -ple),1-n ]

p(e).

Thus p’?(al‘laz) = p'l(e) implies that a;~'a, € Gn.

On algebraic aspects of )-fuzzy subgroups

Conversely,
a,p"(a3) = min {1 - p(al‘lag),l - }
So, p”(a1’1a3) = p”(al’laz. az’lag) > min{p”(a{laz), p’?(az’la_o,) }
=min {p"(e), p(a, 1) |
= P"(ﬂzflﬂs):ﬂzpn(ﬂs)-
By interchanging the a; and a,, we have a;p™(a3) = a,p"(a;) for all a3 € G.
Hence, a1p" = ap".
I Similar as above proof.

Proposition 12. Let p be 7-FNS(G) of a group G and ay,4,,x,y € G. If a;p" = xp" and a,p" = yp" then

ayap" = xyp'.

Proof: Given that a;p = xp" and a,p" = yp", which implies that a,7'x, a,7'y € Gn.
Now (a185)'xy = az‘l(al‘lx)yz az_l(ﬂl_lx)(azaz_l)y
= [az‘l(al‘lx)az ](az‘ly) €Gy GG

This implies that (a14,)'xy € Gyn. Hence, a1a,p" = xyp!.



Proposition 13. Let p% be the collection of all n-fuzzy cosets of a n — FS(G). This form a group under

the binary operation ® define on the set p% as follows: ”’-

1 Fuzzy. Exi. Appl

pla; ® plla, = p'aja, forall ay,a, € G.
76
Proof: As we know that % = [ pla, :a; €G }
Let pay = p'ay and p"a, = p'la,’ forall ay,a,’,a,,a,” € G.
Let g € G then (p'a; ® play)(g) = paya(g) = min {1 - p(g((@12,)"),1 -7 |
= min {1 - P((Sﬂz_l)ﬂl_l)zl -1 ]
= Pr"h(gaz_l) = Pn‘h'(g“z_l)
= min {1 - p((g2,)a, ), 1- 7|

= min {1 - p((a’_lg)b‘l),l -1 }

= pnuz({lll_lg) = Pnazl(al/_lg)

[l
2.
=]

[l
2.
=]

= min {1 -p ((az'_lal’fl)) -1 }

= min {1 - ,O((lh'az/)_lg))'l -n }

=
A
N
Ny
3
—
—
|
=
_
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= min {1 - p(g(a{ﬂz’)fl))rl -1 }
= play’ay’.

. . G
Hence, ® is well define operation on the set o

G - . , - G . o
The set i under this binary operation admits the associative law. The element p'e of on is the identity

element and the inverse of an element p'a; is p'a; L.

Example 10. In view of Example 7 consider p as n- FNS(G).

The set% ={p",2+ p"} forms a group under the following binary operation defined on % as (a; + p) +

(ay + p") = ((a1 + ap) + p").

Note that p'(a;) is identity element of this group and inverse of a; + p” is (—a;) + p'.

Definition 13. The group p—Gn of n-fuzzy cosets of a 7 — FNS(G) is called the quotient group of G by p'.
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Theorem 14. Let G be a group and p—Gn be quotient group with respect to 1 — FNS(G). There exist a natural

epimorphism from G to % which is defined as &(a;) = p'a; with Ker & = G-
Proof: Let a, a; € G be any elements. Then &(aya,) = plaja, = play play = E(aq)é(ay).
Therefore, & is homomorphism. For each pa; € G,n we have a; € G such that &(a;) = p'la;.

This implies that £ is onto homomorphism.
Now Ker £ ={a, € G: &(ay) = ple)
={a,€G: pla; = ple}
={a;€G: me' Gy}
:[aleG: ﬂler’i}Z Gyn.
5 | Homomorphism of n-Fuzzy Subgroups
Anthony and Sherwood [2] observed that using a minimum in the Rosenfeld [8] definition of a fuzzy
subgroup constrains the concept, rendering it useless in a variety of fuzzy situations. They introduced the
concept of an T-norm and redefined the fuzzy subgroup by substituting a T-norm for a minimum. They
investigated the impact of a simple homomorphism on fuzzy subgroups. Here, we present the results of

homomorphism in frame work of our proposed definition.

Theorem 4. Let £: G — G’ be a bijective homomorphism of a group G into a group G'. If p is -
FS(G) then the homomorphic image &(p) is -FS(G').

Proof: Given that p be n-FS(G’). Let a’y,a’, € G’ be any element then we have unique elements a,,a; € G,
such that ¢(a,) = 4’y and p(a,) = a’,.

Further, (£(p))"(@1'5)
= min {1 - &(p)(@1), 1- 1
= min {1 - &(p)(E@)E@), 1-1 )
= min {1 - &(p)(&(a1a)), 1-1
= min {1 - &(p)(@ay), 1 -1
= pNayay)
> min {p'l(a,), p'(ay) | for all ay,a, € G
= min {£(p)E(a), &(p)'E(@,) |
= min [£(p)(a’ ), £(p)(a’5) }

Consequently,



(EP)@1a'y) = min(E)@ ), (&)@, )

{17

Also, (&(p))"@™) = (@ ™) = &(p") (@(ﬂ‘l)) = p'(a!) =p"@ ) e b
= & (E@) = (&) @) 78
Thus, (£(0)"@ ™) = (&) @).

Consequently, &(p) is n-FS(G').

Theorem 5. Let £: G — G’ be a bijective homomorphism of a group G into G'. If p is n-ENS(G)
then the homomorphic image &(p) is -FNS(G’).

Proof: Given that p be n- FNS(G). Let a’y, a’, € G’ be any element then we have unique elements a,,a, €
G, such that &(a;) = a’; and &(ay) = a’5.

(&) (@1a%y) = min {1 - &(p)ara’y), 1-1}
= min {1 - &(p)(&(@)éay), 1-1 )

= min {1 - &(p)(&(a1a,)), 1-17 )

= min {1 - &(p)(E(apnr)), 1-1 )

= min {1 - &(p)(E@)E(), 1-1 )

= min {1-&(p)(a'a’)), 1-7}

= (&(p) @)

Asghar and Ahmad |J. Fuzzy. Ext. Appl. 4(2) (2023) 65-80

Consequently, &(p) is n — FNS(G').

Theorem 6. Let £ : G — G’ be 2 homomorphism of a group G into G'. If ¢ is n— FS(G’) then the
pre-image £71(0) is n-FS(G).

Proof: Given that 0 be -FS(G’). Let ay,a, € G be any element then we have
(&) may) = ENoN(@ar) = 0(&(a1a,)) = 0(E(a1)E(ay))

> min {0"(&(ay)), 0"(&(az)) }

= min {&7 (0")(ay), ENoM)(ay) .

Thus,

(£74(0))(a18,) = min {(&71 0))(ay), (E20)N)(ay) |-

Also (£7(0)(a™!) = (0" (a™!) = o (é(a-l)) = 0"(&@) = £ ).
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Thus, (£7(0))"(a™!) = (£71(0))(a).
Hence, £1(0) is n-FS(G).

Theorem 7. Let £ : G — G’ be a homomorphism of a group G into G'. If ¢ is -FNS(G’) then the pre-
image &71(0) is -FNS(G).

Proof: Let 0 be n — FNS(G’). Let ay, a, € G be any element then we have
ENoNNaya) = oM (may) = 0"(E(a1a)) = 0"(E(@1)E(ay)) = 07(E(azay))

= (E7M0)Nagay).

Thus

b

(EH ) a1a) = (E71(0)) N apa).
Hence ¢71(0) is n- FNS(G).
Theorem 8. Let p be a n-FNS(G) and 4y, 4, € G be any element. If a;p" = a,p" then p(a;) = p"(ay).

Proof: Suppose that a;p = a,p” then by Proposition § we have a;7'a, € Gyn and a,la, € Gn. Since, 1-
FNS(G), this implies that

p(ay) = p?(a, ;) > min {p7(a,7ay), p'(ay) | = min{ p'(e), p'(ay)} = pi(ay).
Therefore, we have p'(a;) > p"(a,). Similatly, we have p'(a;) < p"(a,).
Hence, p'(a;) = p"(ay).

Theorem 9. Let p be a n-FNS(G). Then — =

G G
n °
p Gyn

Proof: Define a map ¢ : % — qu by the rule
p

&(arp") = ;G , for all ay € G. In view of Proposition 8 & is well define.

The application of Proposition 8 leads to note that & is injective. £ is obviously sutjective.

Now consider, for a;p”,ap" e% we have é((alp’?)(azp’?)) = @ayap") = a10,Gpn = 01,Gpn a;Gyn =

E(apME(aypn).

So, £ is homomorphism. Since £ is a bijective mapping, which implies this is an isomorphism. Hence, i =

G

qu‘
6 | Conclusion

In this paper, we introduced the idea of n—FS(G) and n-fuzzy cosets for a given group. We used the
concept of 7-FNS(G) and discussed various related results and properties. We also studied the effect on
the image and inverse image of 1 — FS(G) (FNS(G)) under group homomorphism. We shall extend this



concept to intuitionistic fuzzy sets in the upcoming studies and look into itsnumerous algebraic features.

Moreover, we used the concept of n —fuzzy subset in classical field theory.
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