Document Type : Research Paper

Authors

1 Lyceum of the Philippines University, Muralla St, Intramuros, Manila, 1002 Metro Manila, Philippines.

2 Glink Artificial Intelligence Technology (Shanghai) Co., Ltd,201107 Shanghai, China.

3 China Citic Bank Corporation Limited, Beijing, China.

Abstract

This study investigates integrating and optimizing an intelligent rural management system leveraging advanced technologies, including the Internet of Things (IoT), blockchain, and social networks. Initially, it identifies and scrutinizes prevailing issues in rural development processes, emphasizing the role of rural cultural dissemination, with a specific focus on the impact of social networks. Subsequently, by incorporating fuzzy set theory and adopting an enhanced blockchain consensus algorithm—the Byzantine Fault Tolerance (BFT) algorithm— a comprehensive rural management system is established, combining fuzzy sets and blockchain. Lastly, an intelligent traffic management system is developed to address logistics and distribution challenges in rural revitalization, facilitating efficient interurban delivery. The system automatically invokes the Matlab dynamic link library and employs a hybrid genetic algorithm to plan delivery routes. This study presents key findings on implementing an intelligent rural management system incorporating fuzzy sets, blockchain, and IoT technology. The system notably enhances transparency and traceability in agricultural production and supply chain processes, optimizes logistics and distribution efficiency, and reduces operational costs through intelligent management techniques. Additionally, the integrated application significantly bolsters consumer trust in the quality and safety of agricultural products, leading to heightened overall user satisfaction.

Keywords

Main Subjects

[1]     Geza, W., Ngidi, M. S. C., Slotow, R., & Mabhaudhi, T. (2022). The dynamics of youth employment and empowerment in agriculture and rural development in South Africa: a scoping review. Sustainability (Switzerland), 14(9), 5041. DOI:10.3390/su14095041
[2]     Munir, M., Sinambela, E. A., Halizah, S. N., Khayru, R. K., & Mendrika, V. (2022). Review of vocational education curriculum in the fourth industrial revolu-tion and contribution to rural development. Journal of social science studies (jos3), 2(1), 5–8. DOI:10.56348/jos3.v2i1.20
[3]     Cowie, P., Townsend, L., & Salemink, K. (2020). Smart rural futures: Will rural areas be left behind in the 4th industrial revolution? Journal of rural studies, 79, 169–176. DOI:10.1016/j.jrurstud.2020.08.042
[4]     Hu, X., Sun, L., Zhou, Y., & Ruan, J. (2020). Review of operational management in intelligent agriculture based on the internet of things. Frontiers of engineering management, 7(3), 309–322.
[5]     Rahnamay Bonab, S., Jafarzadeh Ghoushchi, S., Deveci, M., & Haseli, G. (2023). Logistic autonomous vehicles assessment using decision support model under spherical fuzzy set integrated Choquet Integral approach. Expert systems with applications, 214, 119205. DOI:10.1016/j.eswa.2022.119205
[6]     Castelló-Sirvent, F. (2022). A fuzzy-set qualitative comparative analysis of publications on the fuzzy sets theory. Mathematics, 10(8), 1322. DOI:10.3390/math10081322
[7]     Porru, S., Misso, F. E., Pani, F. E., & Repetto, C. (2020). Smart mobility and public transport: Opportunities and challenges in rural and urban areas. Journal of traffic and transportation engineering, 7(1), 88–97. DOI:10.1016/j.jtte.2019.10.002
[8]     Navarro, E., Costa, N., & Pereira, A. (2020). A systematic review of iot solutions for smart farming. Sensors (Switzerland), 20(15), 1–29. DOI:10.3390/s20154231
[9]     Islam, N., Rashid, M. M., Pasandideh, F., Ray, B., Moore, S., & Kadel, R. (2021). A review of applications and communication technologies for internet of things (IoT) and unmanned aerial vehicle (UAV) based sustainable smart farming. Sustainability (Switzerland), 13(4), 1–20. DOI:10.3390/su13041821
[10]   Sodhro, A. H., Obaidat, M. S., Abbasi, Q. H., Pace, P., Pirbhulal, S., Yasar, A. U. H., …& Qaraqe, M. (2019). Quality of service optimization in an IoT-driven intelligent transportation system. IEEE wireless communications, 26(6), 10–17. DOI:10.1109/MWC.001.1900085
[11]   Nigussie, E., Olwal, T., Musumba, G., Tegegne, T., Lemma, A., & Mekuria, F. (2020). IoT-based irrigation management for smallholder farmers in rural Sub-Saharan Africa. Procedia computer science, 177, 86–93. DOI:10.1016/j.procs.2020.10.015
[12]   Tripathy, B. K., Jena, S. K., Reddy, V., Das, S., & Panda, S. K. (2021). A novel communication framework between MANET and WSN in IoT based smart environment. International journal of information technology (Singapore), 13(3), 921–931. DOI:10.1007/s41870-020-00520-x
[13]   Park, E., del Pobil, A. P., & Kwon, S. J. (2018). The role of internet of things (IoT) in smart cities: Technology roadmap-oriented approaches. Sustainability (Switzerland), 10(5), 1388. DOI:10.3390/su10051388
[14]   Chanak, P., & Banerjee, I. (2020). Internet-of-things-enabled smartvillages: An overview. IEEE consumer electronics magazine, 10(3), 12–18.
[15]   Lemayian, J. P., & Al-Turjman, F. (2019). Intelligent IoT communication in smart environments: an overview. In Artificial intelligence in IoT (pp. 207–221). Springer. DOI:10.1007/978-3-030-04110-6_10
[16]   Castañeda-Miranda, A., & Castaño-Meneses, V. M. (2020). Smart frost measurement for anti-disaster intelligent control in greenhouses via embedding IoT and hybrid AI methods. Measurement: journal of the international measurement confederation, 164, 108043. DOI:10.1016/j.measurement.2020.108043
[17]   Pathinarupothi, R. K., Durga, P., & Rangan, E. S. (2019). IoT-based smart edge for global health: Remote monitoring with severity detection and alerts transmission. IEEE internet of things journal, 6(2), 2449–2462. DOI:10.1109/JIOT.2018.2870068
[18]   Kumar, S., Sahoo, S., Lim, W. M., Kraus, S., & Bamel, U. (2022). Fuzzy-set qualitative comparative analysis (fsQCA) in business and management research: A contemporary overview. Technological forecasting and social change, 178, 121599. DOI:10.1016/j.techfore.2022.121599
[19]   Jafarzadeh Ghoushchi, S., Memarpour Ghiaci, A., Rahnamay Bonab, S., & Ranjbarzadeh, R. (2022). Barriers to circular economy implementation in designing of sustainable medical waste management systems using a new extended decision-making and FMEA models. Environmental science and pollution research, 29(53), 79735–79753. DOI:10.1007/s11356-022-19018-z
[20]   Wang, M., & Wang, J. (2023). Uncertainty models in the integration path of rural tourism information construction and smart tourism based on big data technology. Optik, 272, 170320. DOI:10.1016/j.ijleo.2022.170320
[21]   Chen, M., Zhou, Y., Huang, X., & Ye, C. (2021). The integration of new‐type urbanization and rural revitalization strategies in China: Origin, reality and future trends. Land, 10(2), 1–17. DOI:10.3390/land10020207
[22]   Ahmed, N., De, D., & Hussain, I. (2018). Internet of Things (IoT) for smart precision agriculture and farming in rural areas. IEEE internet of things journal, 5(6), 4890–4899. DOI:10.1109/JIOT.2018.2879579
[23]   Podder, A. K., Bukhari, A. Al, Islam, S., Mia, S., Mohammed, M. A., Kumar, N. M., …& Abdulkareem, K. H. (2021). IoT based smart agrotech system for verification of urban farming parameters. Microprocessors and microsystems, 82, 104025. DOI:10.1016/j.micpro.2021.104025
[24]   Jia, H., Zhu, L., & Du, J. (2022). Fuzzy comprehensive evaluation model of the farmers’ sense of gain in the provision of rural infrastructures: the case of tourism-oriented rural areas of China. Sustainability (Switzerland), 14(10), 5831. DOI:10.3390/su14105831
[25]   Yang, M., Jiao, M., & Zhang, J. (2022). Spatio-temporal analysis and influencing factors of rural resilience from the perspective of sustainable rural development. International journal of environmental research and public health, 19(19), 12294. DOI:10.3390/ijerph191912294
[26]   Yizhen, C. H. I., & Linghan, L. I. (2022). The influencing factors and path selection of rural green development from the perspective of new county elite——based on fuzzy set qualitative comparative analysis. Journal of agriculture, 12(12), 87-92.
[27]   Prieto-Egido, I., Sanchez-Chaparro, T., & Urquijo-Reguera, J. (2023). Impacts of information and communication technologies on the SDGs: the case of Mayu Telecomunicaciones in rural areas of Peru. Information technology for development, 29(1), 103–127. DOI:10.1080/02681102.2022.2073581
[28]   Zhou, W., Qing, C., Deng, X., Song, J., & Xu, D. (2023). How does internet use affect farmers’ low-carbon agricultural technologies in southern China? Environmental science and pollution research, 30(6), 16476–16487. DOI:10.1007/s11356-022-23380-3
[29]   Lanchimba, C., Porras, H., Salazar, Y., & Windsperger, J. (2024). Franchising and country development: evidence from 49 countries. International journal of emerging markets, 19(1), 7–32. DOI:10.1108/IJOEM-07-2020-0779
[30]   Ghasemi, P., Hemmaty, H., Pourghader Chobar, A., Heidari, M. R., & Keramati, M. (2023). A multi-objective and multi-level model for location-routing problem in the supply chain based on the customer’s time window. Journal of applied research on industrial engineering, 10(3), 412-426. http://www.journal-aprie.com/article_149806.html
[31]   Shitharth, S., Manoharan, H., Shankar, A., Alsowail, R. A., Pandiaraj, S., Edalatpanah, S. A., & Viriyasitavat, W. (2023). Federated learning optimization: A computational blockchain process with offloading analysis to enhance security. Egyptian informatics journal, 24(4), 100406. DOI:10.1016/j.eij.2023.100406
[32]   Babazadeh, Y., Farahmand, N. F., Pasebani, M., & Matın, Y. A. (2022). Identifying key indicators for developing the use of blockchain technology in financial systems. International journal of research in industrial engineering, 11(3), 244–257.
[33]   Colombo, J. A., Akhter, T., Wanke, P., Azad, M. A. K., Tan, Y., Edalatpanah, S. A., & Antunes, J. (2023). Interplay of cryptocurrencies with financial and social media indicators: an entropy-weighted neural-MADM approach. Journal of operational and strategic analytics, 1(4), 160–172. DOI:10.56578/josa010402
[34]   Torabi, S. (2023). Review of blockchain integrated WSN. Computational algorithms and numerical dimensions, 2(1), 7–11.
[35]   Cao, Y., Fu, F., Nejati, F., Chabok, S. H., & Edalatpanah, S. A. (2022). Identifying effective managerial factors in improving and renovating old urban tissues: a case study approach. Buildings, 12(12), 2055. DOI:10.3390/buildings12122055
[36]   Kumar, A., & Thomaz, A. C. F. (2023). Prediction of fertilizer in horticulture through IoT enabled technology. Big data and computing visions, 3(1), 15–20.
[37]   Wang, C. N., Nguyen, N. A. T., & Dang, T. T. (2022). Offshore wind power station (OWPS) site selection using a two-stage MCDM-based spherical fuzzy set approach. Scientific reports, 12(1), 4260. DOI:10.1038/s41598-022-08257-2
[38]   Mahajan, H. B., Badarla, A., & Junnarkar, A. A. (2021). CL-IoT: cross-layer internet of things protocol for intelligent manufacturing of smart farming. Journal of ambient intelligence and humanized computing, 12(7), 7777–7791. DOI:10.1007/s12652-020-02502-0
[39]   Almalki, F. A., Soufiene, B. O., Alsamhi, S. H., & Sakli, H. (2021). A low-cost platform for environmental smart farming monitoring system based on iot and uavs. Sustainability (Switzerland), 13(11), 5908. DOI:10.3390/su13115908
[40]   Malik, P. K., Singh, R., Gehlot, A., Akram, S. V., & Kumar Das, P. (2022). Village 4.0: Digitalization of village with smart internet of things technologies. Computers and industrial engineering, 165, 107938. DOI:10.1016/j.cie.2022.107938